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Abstract

Stress and displacement fields for a crack propagating along gradient in a functionally gradient material, which has

(1) a linear variation of shear modulus with a constant density and Poisson�s ratio, and (2) an exponential variation of

shear modulus and density under a constant Poisson�s ratio, are developed.

The equations of motion in nonhomogeneous materials are first developed using displacement potentials and the

solution to the displacement fields and the stress fields for a crack propagating at constant speed though an asymptotic

analysis. The influence of nonhomogeneity on the higher order terms of the stress fields are explicitly brought out.

Using these stress components, isochromatic fringes around the propagating crack are generated for different crack

speeds and nonhomogeneity and the effects of nonhomogeneity on these fringes are discussed.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Several novel materials have recently been developed to meet the increasing demand of modern tech-

nology (Niino et al., 1987; Butcher et al., 1999; Jedamzik et al., 2000; Zeng et al., 2000). Among these,
functionally graded materials (FGMs) are unique in that they offer the possibility of tailoring their con-

stituents and gradation to match the end use. These materials also have certain advantages over existing

isotropic materials and conventional composites, especially in applications that demand, resistance to

corrosion and high temperature as in furnace walls and turbine blades, wear resistance as in gears and high

speed machine tools, combined with good toughness and strength characteristics. Conventional materials,

which satisfy all these requirements, are rare. The general practice therefore has been to provide an interior

wall made of high heat resistance material in the case of furnaces and in the case of gears and tools with

super wear resistance material. Unfortunately, such interior walls or coatings are mechanically weak at the
interface due to discontinuous stresses resulting from thermal gradients and due to poor bond strength,
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leading to interface cracking and spallation. FGMs can be effectively designed to overcome these defi-

ciencies, by proper choice of the constituents and gradation. The spatial variation of the material com-

position in FGMs results in a medium with varying elastic and physical properties and calls for special

methods of processing and analysis.
Until now, the fracture of an FGM under quasi-static loading, which is one of the predominant modes of

material failure, has been investigated extensively (Erdogan, 1995; Jin and Batra, 1996; Gu et al., 1999). The

primary conclusion of these investigations is that the classical inverse square root singular nature of the

stress field is preserved in FGMs, however, the stress intensity factor is influenced by the nonhomogeneity

of the material. Therefore, very close to the crack tip in FGMs, the stresses are identical to that in a

homogeneous material. The structure of the stress field away from crack tip is significantly altered by

nonhomogeneity, as has been demonstrated by Eischen (1987) and Parameswaran and Shukla (2002).

The behavior of propagating cracks in FGMs has also attracted some attention. Following an earlier
study by Atkinson and List (1978), several groups have investigated the behavior of propagating cracks in

FGMs especially after their introduction. (Wang and Meguid, 1995; Rousseau and Tippur, 2001; Jiang and

Wang, 2002). For propagating cracks along the gradient in FGMs, Parameswaran and Shukla (1999, 2002)

developed the structure of the first stress invariant and the out of plane displacement bring out the effects

of nonhomogeniety. However, nonhomogeneity specific terms for individual stress components have not

been developed. Such stress fields are required in the analysis of full field experimental data obtained

through techniques such as photoelasticity and coherent gradient sensing (CGS). This paper provides the

stress and displacement fields for a crack propagating at a constant speed along the direction of property
variation in an FGM. The elastodynamic problem is formulated in terms of displacement potentials and

the solution is obtained through an asymptotic analysis assuming a linear variation of elastic modulus with

a constant density in Section 2. In Section 3, the solution for an identical exponential variation of elastic

properties and density is obtained by employing the same procedure as used in Section 2. In Section 4,

using the stress and displacement fields obtained in Sections 2 and 3, the characteristics of stress and

displacement components around a propagating crack tip are examined for different crack speeds and

nonhomogeneity.
2. Stress and displacement fields for a linear variation of elastic properties with a constant density

2.1. Formation for equilibrium equations

When the FGM has a linearly increasing shear modulus such as l ¼ l0ð1þ 1X Þ under a constant density
q and Poisson�s ratio m, the relationship between stresses and strains can be written as
rX ¼ ½a11eX þ a12eY �ð1þ 1X Þ
rY ¼ ½a12eX þ a11eY �ð1þ 1X Þ
sXY ¼ l0cXY ð1þ 1X Þ

ð1Þ
where X is the reference coordinate, rij the inplane stress components, a11 ¼ k0 þ 2l0 and a12 ¼ k0, and k0
and l0 denoting Lame�s constant and the shear modulus at X ¼ 0, respectively. 1 is the nonhomogeneity

constant which has dimension (length)�1. It should be noted in this case that the longitudinal and shear

wave speeds of the medium are variable.

If the deformation is plane strain, the displacements u and v which are derived from dilatational and

shear wave potentials U and W can be expressed by Eq. (2)
u ¼ oU
oX

þ oW
oY

; v ¼ oU
oY

� oW
oX

ð2Þ



K.H. Lee / International Journal of Solids and Structures 41 (2004) 2879–2898 2881
The equilibrium in dynamic state is given by Eq. (3)
orX

oX
þ osXY

oY
¼ q

o2u
ot2

;
osXY
oX

þ orY

oY
¼ q

o2v
ot2

ð3Þ
Substituting Eq. (2) into Eq. (1), and substituting Eq. (1) into Eq. (3), the equations for the dynamic state

can be obtained as
o

oX
ð1

�
þ 1X Þðk þ 2Þr2U� q

l0

o2U
ot2

�
þ o

oY
ð1

�
þ 1X Þr2W� q

l0

o2W
ot2

�
� 21

o2U
oY 2

�
� o2W
oXoY

�
¼ 0

ð4aÞ

o

oY
ð1

�
þ 1X Þðk þ 2Þr2U� q

l0

o2U
ot2

�
� o

oX
ð1

�
þ 1X Þr2W� q

l0

o2W
ot2

�
þ 21

o2W
oY 2

�
þ o2U
oXoY

�
¼ 0

ð4bÞ
where k ¼ k0=l0, Eq. (4) can be satisfied when expressed as Eq. (5)
ð1þ 1X Þðk þ 2Þr2U� q
l0

o2U
ot2

þ 21
oW
oY

¼ 0 ð5aÞ

ð1þ 1X Þr2W� q
l0

o2W
ot2

� 21
oU
oY

¼ 0 ð5bÞ
For a propagating crack, the transformed crack tip coordinates are x ¼ X � ct, y ¼ Y . From this relation,

we can write the equations of motion for steady state can be written as
a2l
o2U
ox2

þ o2U
oy2

þ bx
o2U
ox2

�
þ o2U

oy2

�
þ 2b
k þ 2

oW
oy

¼ 0 ð6aÞ

a2s
o2W
ox2

þ o2W
oy2

þ bx
o2W
ox2

�
þ o2W

oy2

�
� 2b

oU
oy

¼ 0 ð6bÞ
where
al ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c

cl

� �2
s

; as ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c

cs

� �2
s

; cs ¼
ffiffiffiffiffi
lc

q

r

cl ¼ cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� mÞ
1� 2m

r
for plane strain; cl ¼ cs

ffiffiffiffiffiffiffiffiffiffiffi
2

1� m

r
for plane stress;

lc ¼ l0ð1þ a1Þ; bða; 1Þ ¼ 1
l0

lc

¼ 1
1þ a1
The a is half the crack length in a center crack or the crack length of an edge crack. lc and l0 are shear

modulus at the crack tip and x ¼ �a, respectively. c, cl and cs are the crack propagation velocity, elastic

dilatational wave velocity and elastic shear wave velocity at the crack tip. In this case, bða; 1Þ is dependent
on the crack length and the nonhomogeneity constant 1. It is very difficult to obtain analytical solutions for

the elastodynamic differential equation (6). Thus, an asymptotic analysis similar to that employed by
Freund (1990) is used to expand the stress field around the propagating crack. To obtain an asymptotic

expansion of the fields around the crack tip, the crack tip coordinates are scaled to fill the entire field of
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observation (Freund, 1990). This can be achieved by introducing new coordinates g1 ¼ x=e, g2 ¼ y=e and e
is a small arbitrary positive number. For very small values of e, the points very close to the crack tip

are mapped into the range of observation in the g1; g2 plane. In the scale coordinates, Eq. (6) takes the form
a2l
o2U
og21

þ o2U
og22

þ eb g1
o2U
og21

��
þ o2U

og22

�
þ 2

k þ 2

oW
og2

�
¼ 0 ð7aÞ

a2s
o2W
og21

þ o2W
og22

þ eb g1
o2W
og21

��
þ o2W

og22

�
� 2

oU
og2

�
¼ 0 ð7bÞ
At this stage it is assumed that U and W can be expanded by powers of e as
Uðx; yÞ ¼ Uðeg1; eg2Þ ¼
X1
n¼1

en=2þ1Unðg1; g2Þ

Wðx; yÞ ¼ Wðeg1; eg2Þ ¼
X1
n¼1

en=2þ1Wnðg1; g2Þ
ð8Þ
as r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
! 0 and e is a small arbitrary value. Substituting Eq. (8) into Eq. (7) and setting the partial

differential equations associated with each power of e to zero, the coupled differential equations for Un and

Wn can be obtained.
a2l
o2Un

og21
þ o2Un

og22
¼ �bg1

o2Un�2

og21

�
þ o2Un�2

og22

�
� 2b
k þ 2

oWn�2

og2
ð9aÞ

a2s
o2Wn

og21
þ o2Wn

og22
¼ �bg1

o2Wn�2

og21

�
þ o2Wn�2

og22

�
þ 2b

oUn�2

og2
ð9bÞ
The Un and Wn have the complex functions zlðg1; ialg2Þ and zsðg1; iasg2Þ, respectively, and Un ¼ Wn ¼ 0 if

n < 0. When the 1 ¼ 0, the right side terms of equation become zero.

2.2. The stress and displacement fields for n ¼ 1; 2

From Eq. (9), the differential equations for n ¼ 1 and 2 are given in Eq. (10)
a2l
o2Un

og21
þ o2Un

og22
¼ 0; a2s

o2Wn

og21
þ o2Wn

og22
¼ 0 ð10Þ
Eq. (10) is the Laplace equation and the same as that for a homogeneous material. The general solutions of

Eq. (10) for fields Un and Wn can be assumed as
Unðg1; g2Þ ¼ �Re

Z
/nðzlÞdzl

Wnðg1; g2Þ ¼ �Im

Z
wnðzsÞdzs

ð11Þ
Substituting the differentiation of Un and Wn in Eq. (11) into Eq. (2), the displacements in scaled plane can

be obtained as en=2f/nðg1; g2Þ;wnðg1g2Þg. Thus, the displacements u and v in the unscaled physical plane for
n ¼ 1 and 2 can be expressed as Eq. (12).
u ¼ �Ref/nðzlÞ þ aswnðzsÞg
v ¼ Imfal/nðzlÞ þ wnðzsÞg

ð12Þ
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Substituting the differentiation of Eq. (12) into Eq. (1), the stress fields in the scaled plane can be obtained

as en=2�1lf/nðg1; g2Þ;wnðg1g2Þg. Thus the stress rij in the unscaled physical plane for n ¼ 1 and 2 can be

expressed as Eq. (13).
rx ¼ �lRefð1þ 2a2l � a2s Þ/
0
nðzlÞ þ 2asw

0
nðzsÞg

ry ¼ lRefð1þ a2s Þ/
0
nðzlÞ þ 2asw

0
nðzsÞg

sxy ¼ lImf2al/0
nðzlÞ þ ð1þ a2s Þw

0
nðzsÞg

ð13Þ
The /nðzlÞ and wnðzlÞ can be written with a power series as
/nðzlÞ ¼
X2

n¼1

Anz
n=2
l ; wnðzsÞ ¼

X2

n¼1

Bnzn=2s ð14Þ
where An and Bn are complex constants and zl ¼ xþ ialy and zs ¼ xþ iasy. Substituting Eq. (14) into Eq.
(13), applying traction free boundary conditions on the crack surface to Eq. (13), the stresses for propa-

gating crack in unscaled physical plane can be obtained as Eq. (15).
rxn ¼ ð1þ bxÞ
X2

n¼1

r0
xn; ryn ¼ ð1þ bxÞ

X2

n¼1

r0
yn; sxyn ¼ ð1þ bxÞ

X2

n¼1

s0xyn ð15Þ
where
r0
xn ¼

K0
nBIðcÞffiffiffiffiffiffi
2p

p n ð1
�

þ 2a2l � a2s Þr
n�2
2

l cos
n� 2

2

� �
hl � 2ashðnÞr

n�2
2

s cos
n� 2

2

� �
hs

�

þ K�
nBIIðcÞffiffiffiffiffiffi
2p

p n ð1
�

þ 2a2l � a2s Þr
n�2
2

l sin
n� 2

2

� �
hl � 2ashð�nÞr

n�2
2

s sin
n� 2

2

� �
hs

�

r0
yn ¼

K0
nBIðcÞffiffiffiffiffiffi
2p

p n
�
� ð1þ a2s Þr

n�2
2

l cos
n� 2

2

� �
hl þ 2ashðnÞr

n�2
2

s cos
n� 2

2

� �
hs

�

þ K�
nBIIðcÞffiffiffiffiffiffi
2p

p n
�
� ð1þ a2s Þr

n�2
2

l sin
n� 2

2

� �
hl þ 2ashð�nÞr

n�2
2

s sin
n� 2

2

� �
hs

�

s0xyn ¼
K0

nBIðcÞffiffiffiffiffiffi
2p

p n
�
� 2alr

n�2
2

l sin
n� 2

2

� �
hl þ ð1þ a2s ÞhðnÞr

n�2
2

s sin
n� 2

2

� �
hs

�

þ K�
nBIIðcÞffiffiffiffiffiffi
2p

p n 2alr
n�2
2

l cos
n� 2

2

� �
hl

�
� ð1þ a2s Þhð�nÞr

n�2
2

s cos
n� 2

2

� �
hs

�

The displacement for propagating crack in an unscaled physical plane can be obtained as Eq. (16).
un ¼
1

ð1þ faÞ
X2

n¼1

u0n; vn ¼
1

ð1þ faÞ
X2

n¼1

v0n ð16Þ
where
u0n ¼
K0

nBIðcÞ
l0

ffiffiffi
2

p

r
r
n
2

l cos
n
2

� 	
hl

n
� ashðnÞr

n
2
s cos

n
2

� 	
hs
o
þK�

nBIIðcÞ
l0

ffiffiffi
2

p

r
r
n
2

l sin
n
2

� 	
hl

n
� ashð�nÞr

n
2
s sin

n
2

� 	
hs
o
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v0n ¼
K0

nBIðcÞ
l0

ffiffiffi
2

p

r n
� alr

n
2

l sin
n
2

� 	
hl þ hðnÞr

n
2
s sin

n
2

� 	
hs
o
þK�

nBIIðcÞ
l0

ffiffiffi
2

p

r
alr

n
2

l cos
n
2

� 	
hl

n
� hð�nÞr

n
2
s cos

n
2

� 	
hs
o

rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðajyÞ2

q
; hj ¼ tan�1ðajy=xÞ; j ¼ l; s
hðnÞ ¼ 2al
1þ a2s

ðn ¼ oddÞ; 1þ a2s
2as

ðn ¼ evenÞ; �n ¼ nþ 1
BIðcÞ ¼
1þ a2s

4alas � ð1þ a2s Þ
2
; BIIðcÞ ¼

2as
4alas � ð1þ a2s Þ

2

K0
I and K0

II for n ¼ 1 are the stress intensity factors KI and KII, respectively. When n ¼ 1 and 2, the dif-

ferential equations in Eq. (10) are the same as those for a homogeneous material (Freund, 1990) but their

stress and displacement fields are influenced by the nonhomogeneity constant 1.
2.3. Stress and displacement fields for n ¼ 3

For nP 3 in Eq. (9), the Un and Wn become nonhomogeneous fields, and only n ¼ 3 is considered to

generate the fields in this study. To solve Eq. (9), the relation between U1ðzlÞ and W1ðzsÞ must be known. If

the relation between U1ðzlÞ and W1ðzsÞ does not apply to Eq. (9), the dilatational and rotational terms in the

equations of motion remain coupled. This causes the stress fields to be infinite when the crack velocity

approaches zero. Considering Eq. (10), the relation between U1ðzlÞ and W1ðzsÞ can be obtained when the 1
terms in Eq. (4) are zero. Thus, the relations can be expressed as (see Appendix A).
o

og2
W1ðzsÞ ¼ � AðalÞ

BðasÞ
o

og1
U1ðzlÞ ¼ �ðk þ 2Þ o

og1
U1ðzlÞ ð17aÞ
1

k þ 2

o

og1
W1ðzsÞ ¼

o

og2
U1ðzlÞ ð17bÞ
where
AðalÞ ¼ ðk þ 2Þ ð1
�

� a2l Þ �
qc2

l0ðk þ 2Þ

�
; BðasÞ ¼ ð1� a2s Þ �

qc2

l0
Substituting Eq. (17) into Eq. (9), Eq. (9) becomes as
a2l
o2U3

og21
þ o2U3

og22
¼ �bg1

o2U1

og21

�
þ o2U1

og22

�
þ 2b

oU1

og1
ð18aÞ
a2s
o2W3

og21
þ o2W3

og22
¼ �bg1

o2W1

og21

�
þ o2W1

og22

�
þ 2b
k þ 2

oW1

og1
ð18bÞ
Let the right side terms U1ðzlÞ and W1ðzsÞ in Eq. (18) put �Re
R
U1ðzlÞdzl, �Im

R
W1ðzsÞdzs, respectively,

then the solutions for U3ðzlÞ and W3ðzsÞ can be obtained as
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U3ðg1; g2Þ ¼ Re

�
�
Z

/3ðzlÞdzl þ b
1� a2l
a2l

g1r
2
l aj/

0
1ðzlÞ

�
� 1

3a2l
r2l /1ðzlÞ

��
ð19aÞ
W3ðg1; g2Þ ¼ Im

�
�
Z

w3ðzsÞdzs þ b
1� a2s
a2s

g1r
2
sajw

0
1ðzsÞ

�
� 1

3ðk þ 2Þa2s
r2sw1ðzsÞ

��
ð19bÞ
where aj is a coefficient of trigonometric function, and
aj ¼
1
4
: aj cos 3

2
hj; aj sin 3

2
hj


 �
1
6
: aj cos 1

2
hj; aj sin 1

2
h


 ��
The first term on the right hand side in Eq. (19) corresponds to that for a homogeneous material and the

additional term is the result of the nonhomogeneity of the material. The nonhomogeneous K displacement

field obtained from Eq. (19), unonðb;KÞ can be applied in r ! 0. However the displacement components

obtained from the last terms in Eq. (19) approach very large values except when r ¼ 0 when the crack

propagation velocity approaches zero. Such a behavior is not consistent with the physical meaning of r > 0.

Thus, the last terms can not be applied in the case where r > 0. Substituting Eq. (19) into Eq. (2) and
applying the traction free boundary condition to the crack surface, the components of displacement in the

unscaled plane can be expressed as
u3 ¼
1

ð1þ faÞ u03

(
� b

KIBIðcÞ
l0

ffiffiffiffiffiffi
2p

p r3=2l

ð1� a2l Þ
a2l

F ðhlÞ
�

þ r3=2s h1
ð1� a2s Þ

as
GðhsÞ

�

� b
KIIBIIðcÞ
l0

ffiffiffiffiffiffi
2p

p r3=2l

ð1� a2l Þ
a2l

HðhlÞ
�

þ r3=2s
�h1

ð1� a2s Þ
as

IðhsÞ
�)

ð20Þ
v3 ¼
1

ð1þ faÞ v03

(
� b

KIBIðcÞ
l0

ffiffiffiffiffiffi
2p

p r3=2l

ð1� a2l Þ
al

IðhlÞ
�

þ r3=2s h1
ð1� a2s Þ

a2s
HðhsÞ

�

þ b
KIIBIIðcÞ
l0

ffiffiffiffiffiffi
2p

p r3=2l

ð1� a2l Þ
al

GðhlÞ
�

þ r3=2s
�h1

ð1� a2s Þ
a2s

F ðhsÞ
�)

ð21Þ
where
F ðhjÞ ¼
1

16
cos

5

2
hj þ

1

12
cos

3hj
2

þ 3

8
cos

hj
2
; GðhjÞ ¼ � 1

16
cos

5

2
hj þ

1

12
cos

3hj
2

þ 1

8
cos

hj
2

HðhjÞ ¼ � 1

16
sin

5

2
hj þ

1

12
sin

3hj
2

� 3

8
sin

hj
2

IðhjÞ ¼
1

16
sin

5

2
hj þ

1

12
sin

3hj
2

� 1

8
sin

hj
2
; j ¼ l; s
Substituting the differentiations of Eqs. (20) and (21) into Eq. (1), the stresses for a propagating crack in the
unscaled plane can be obtained as
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rx3 ¼ ð1þ bxÞ r0
x3

�
þ b

KIBIðcÞffiffiffiffiffiffi
2p

p r1=2l ð1
�

þ 2a2l � a2s ÞA1C1ðhlÞ �
ð1� a2s Þ
ð1� a2l Þ

A1

2
C2ðhlÞ

�

þ b
KIBIðcÞffiffiffiffiffiffi

2p
p r1=2s

�
� 2asB1h1

1

4
cos

1

2
hs

�
� 1

16
cos

3hs
2

þ 1

32
cos

7

2
hs

��

þ b
KIIBIIðcÞffiffiffiffiffiffi

2p
p r1=2l

�
� ð1þ 2a2l � a2s ÞA1S1ðhlÞ þ

ð1� a2s Þ
ð1� a2l Þ

A1

2
S2ðhlÞ

�

þ b
KIIBIIðcÞffiffiffiffiffiffi

2p
p r1=2s 2asB1

�h1

��
� 1

4
sin

1

2
hs �

1

16
sin

3hs
2

þ 1

32
sin

7

2
hs

���
ð22Þ

ry3 ¼ ð1þ bxÞ r0
y3

�
þ b

KIBIðcÞffiffiffiffiffiffi
2p

p r1=2l

�
� ð1þ a2s ÞA1C1ðhlÞ þ

ð1þ a2s � 2a2l Þ
ð1� a2l Þ

A1

2
C2ðhlÞ

�

þ b
KIBIðcÞffiffiffiffiffiffi
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where
A1 ¼
1� a2l
a2l

; B1 ¼
1� a2s
a2s

C1ðhjÞ ¼
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16
cos
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2
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32
cos
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2
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h1 ¼ � 14A1al
½32� 7ð1þ a2s Þ�B1

; �h1 ¼
A1fð1þ a2s Þ½7ð1� a2l Þ � 32� þ 64a2l g
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Finally, the fields for FGM, rij and uj are given in Eq. (25)
rij ¼
X3

n¼1

rijn; uj ¼
X3

n¼1

ujn ð25Þ
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The stress fields in Eq. (25) satisfy the traction free condition on the crack surface (h ¼ �p). When the

nonhomogeneity parameter 1 ¼ 0, the equations reduce to the fields for an isotropic homogeneous material.

It can be observed from the stress and displacement fields (Eqs. (20)–(24)) that, due to nonhomogeneity, the

higher order terms (n ¼ 3 and above) involve additional expressions containing the stress intensity factor.
However, these additional expressions scaled by the nonhomogeneity parameter, b (for example see Eqs.

(20)–(24)) become insignificant compared to the singular term of the expansion at the crack tip. Thus, very

close to the crack tip, the stress and displacement fields can be adequately represented by the solution for

homogeneous materials. However, the stress and displacement field that is remote from the crack tip must

be expressed by Eq. (25) which contains nonhomogeneity specific expressions. Generally, in order to obtain

the fracture parameters for a homogeneous material from experimental data obtained through optical

techniques such as photoelasticity or coherent gradient sensing (CGS) the use of the first few terms of the

stress fields is sufficient. The coefficient of term n ¼ 1ðr�1=2fijÞ is proportional to the stress intensity factor
and that of the term n ¼ 2ðr0fijÞ is the uniform stress rox in the direction of the crack. In FGMs, it is

necessary to use at least three terms of the fields to explicitly account for the nonhomogeneity effects when

extracting fracture parameters from experimental data.
3. Stress and displacement fields for an exponential variation of elastic properties and density

The elastic constants l and q of FGM are assumed to vary in an exponential manner as given by Eq.

(26), where as the Poisson�s ratio m is assumed to be constant.
l ¼ l0 expðfX Þ; q ¼ q0 expðfX Þ ð26Þ
l0 and q0 are shear modulus at X ¼ 0, respectively, and 1 is the nonhomogeneity constant. By employing
the same procedure used in Section 2.1, the equilibrium equation for exponential variation of elastic

properties can be obtained as
o

oX
ðk

�
þ 2Þr2U� q0

l0

o2U
ot2

�
þ o

oY
r2W

�
� q0

l0

o2W
ot2

�
þ f kr2U

�
þ 2

o2U
oX 2

þ 2
o2W
oXoY

�
¼ 0 ð27aÞ

o

oY
ðk

�
þ 2Þr2U� q0

l0

o2U
ot2

�
� o

oX
r2W

�
� q0

l0

o2W
ot2

�
þ f 2

o2U
oXoY

�
þ o2W

oY2
� o2W

oX2

�
¼ 0 ð27bÞ
where k ¼ k0=l0. For a propagating crack the transformed crack tip coordinates are x ¼ X � ct, y ¼ Y .
Thus, Eq. (27) can be expressed as
a2l
o2U
ox2

þ o2U
oy2

þ f
oU
ox

þ f
k þ 2

oW
oy

¼ 0 ð28aÞ

a2s
o2W
ox2

þ o2W
oy2

þ f
oW
ox

þ fk
oU
oy

¼ 0 ð28bÞ
It should be noted here that, Eq. (28), unlike Eq. (6) for the linear variation of elastic properties, have

coefficients which are all constants. Hence, for crack speeds that are less than the shear wave speed of the

material, the partial differential equation is elliptic over the entire domain. However, the form of the

equation is still different from the classical wave equation. The same procedure used in the previous section

is used to obtain the asymptotic expansion of the displacement and stress fields. For n equal to 1 and 2, the
partial differential equations and their solutions are the same as those in the case of linear variation and

hence, the crack tip stress and displacement fields can be expressed as
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rxn ¼ efx
X2

n¼1

r0
xn; ryn ¼ efx

X2

n¼1

r0
yn; sxyn ¼ efx

X2

n¼1

s0xyn ð29Þ
The displacement for propagating crack in unscaled physical plane can be obtained as Eq. (30).
un ¼ e�1a
X2

n¼1

u0n; vn ¼ e�fa
X2

n¼1

v0n ð30Þ
The form of the partial differential equation for n greater than 2 is somewhat different from Eq. (9) and is

given as
a2l
o2Un

og21
þ o2Un

og22
¼ �f

oUn�2
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�
þ 1

k þ 2

oWn�2
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�
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þ o2Wn
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¼ �f

oWn�2

og1

�
þ k

oUn�2

og2

�
ð31bÞ
Applying the relation between U1ðzlÞ and W1ðzsÞ in Eq. (17) to Eq. (31), Eq. (31) becomes as
a2l
o2U3

og21
þ o2U3

og22
¼ 0 ð32Þ

a2s
o2W3

og21
þ o2W3

og22
¼ �f ð1

�
� dsÞ

oW1

og1

�
ð33Þ
where
ds ¼
�k
k þ 2

¼ 1þ a2s � 2a2l
1� a2s
Let the right side term W1ðzlÞ in Eq. (33) put �Im
R
w1ðzsÞdzs, then the U3ðzlÞ and W3ðzsÞ can be obtained

as
U3ðg1; g2Þ ¼ Re

�
�
Z

/3ðzlÞdzl
�

W3ðg1; g2Þ ¼ Im

�
�
Z

w3ðzsÞdzs þ f
1� ds
6a2s

r2sw1ðzsÞ
� ð34Þ
Substituting Eq. (34) into Eq. (2), the components of displacement in the unscaled plane can be expressed as
u3 ¼ expð�faÞ u03
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Substituting the differentiations of Eqs. (35) and (36) into Eq. (1), the stresses for a propagating crack in

unscaled plane can be obtained as
rx3 ¼ expðfxÞ r0
x3
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where
B ¼ 1� ds
a2s
Even if the stresses for n ¼ 3 are expressed as the above equations, considering the traction free con-

ditions on a crack surface (h ¼ �p), h and �h must be zero. Thus, the fields rij and uj for an exponential

variation in elastic properties and density are can be expressed as Eq. (40).
rij ¼ expðfxÞ
X1
n¼1

r0
ijn; uj ¼ expð�faÞ

X1
n¼1

u0jn ð40Þ
The stress fields around the crack tip (x is small) in Eq. (40) can be expressed as
rij ffi r0
ij1 þ r0

ij2ðr0xÞ þ fx½r0
ij1 þ r0x� þ � � � ð41Þ
As is known from Eq. (41), higher order terms of stresses at the crack tip in the form of an asymptotic

expansion show the coefficients of r�1=2 and r0 to also be identical to those present in the asymptotic the

behavior of a formulation of homogeneous crack tip. Only terms of the order r1=2 and beyond would be
influenced by such a gradient, which would have coefficients different from those of homogeneous mate-

rials. However, higher terms of displacements at the crack tip as an asymptotic expansion would be

influenced not by 1x but by 1a.
4. Characteristics of a propagating crack in an FGM

4.1. Effect of nonhomogeneity on stress fields

In order to investigate the effects of nonhomogeneity on stress components close to the crack tip, Eq.

(41) for the exponential variation of elastic properties is used. To analyze the isochromatic fringe patterns

that are remote from the crack tip, Eqs. (25) and (41) are used. In addition, all the coefficients other than

those proportional to the stress intensity factor are assumed to be zero. The stress components (see Fig. 1)

were evaluated as a function of the angular position (h) at three different radial locations (r) for a near

stationary crack and for a crack propagating at M ¼ 0:7, where M is c=cs. The mechanical properties of the

particulate FGM developed by Parameswaran and Shukla (2000), as shown in Table 1, were used. The

variation of the elastic modulus for this FGM is shown in Fig. 2, along with the exponential fit. Figs. 3–5
show the angular variation of the normalized stress components for a mode I crack and Figs. 6–8 show the



Fig. 1. Stress components in the vicinity of the crack tip.

Table 1

Mechanical properties for a polyester FGM

Nonhomogeneous shear modulus, lðX Þ lðX Þ ¼ 1:316e1X (GPa)

FGM constant, 1 1 ¼ 1:19=m

Poisson�s ratio, m m ¼ 0:33

Density at X ¼ 0, q0 q0 ¼ 1200 (kg/m3)
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Fig. 2. Variation of shear modulus l with X location.
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variation for a mode II crack. The normalization is carried out by dividing the stress components by

(K=
ffiffiffiffiffiffiffi
2pr

p
). In a homogeneous material this would imply that only the singular term of the stress field needs

to be considered and due to the normalization scheme the curves for different values of r will fall on top of
each other in Figs. 3–8. However, in the case of FGMs, the additional expression of the higher order term

(r1=2) proportional to the stress intensity factor arising out of nonhomogeneity are still retained through

which the nonhomogeneity effects are manifested.

Fig. 3 shows the normalized stress rx=rþ
I around a near stationary crack tip and a propagating crack tip

for a value of 1 ¼ 1:19/m under mode I loading. Similar to homogeneous material, for the same value of KI,

the normalized rx increases with crack propagation velocity and reaches a maximum at h ¼ 0� and a

minimum at h ¼ �180�. The stresses very near the crack tip (r ¼ 0:001 m) are the same as those for iso-
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tropic materials as this curve coincides with the curve shown for an isotropic material. However, as the
values of r increase the curves separate from each other depending on the value of h, thus, indicating the

nonhomogeneity effect. As can be seen from Fig. 3, the effect of nonhomogeneity on stress rx is the greatest

at h ¼ 0� at which the stress in the FGM is greater than that of a homogeneous material. This increase is

larger for higher values of r. The results are representative of the increase in mechanical properties along

h ¼ 0� with increasing r. When the crack is static, rx is independent of 1 at h ¼ 90�, when the crack

propagates at M ¼ 0:7, rx is independent of 1 at h ¼ 110�. The result for a static crack is due to the effect of

mechanical properties which are constant along h ¼ 90�, but the result for a propagating crack is due to the

effect of mechanical properties as well as crack velocity. rx approaches zero on the crack faces and therefore
the stress rx in this zone is small, nearly the same as that in isotropic materials.
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Fig. 4 shows the normalized stress ry=rþ
I around stationary and propagating crack tip under mode I

loading. In this case, ry=rþ
I is maximum at h ¼ 60� when M ¼ 0:02, where as for M ¼ 0:7 the maximum

occurs at h ¼ 70�. The effect of nonhomogeniety 1 on stress ry is more significant for jhj6 80� with the
greatest at h ¼ 0�. Similar to rx the stress ry in FGM is greater than that of an isotropic material as r
increases. ry is almost independent of 1 in the region 90�6 jhj6 180� regardless of crack velocity.

The angular variation of the normalized stress sxy=rþ
I around the crack tip for mode I loading, shown in

Fig. 5, indicates that nonhomogeneity has very little effect on shear stress sxy . The shear stress reaches a

maximum at h ¼ 110� and is zero along h ¼ 0�, and h ¼ �180� regardless of crack velocity.

The angular variation of the normalized stress components rij=rþ
II for different values of r are shown in

Figs. 6–8 for a shear mode crack. In the case of a mode II crack, the nonhomogeniety effects on rx reach a
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maximum at h ¼ 180� and increase with increasing r as shown in Fig. 6. In the case of ry , the effect of 1 is
very little as Fig. 5. In the case of shear stress sxy , the nonhomogeneity effects are dominant around h ¼ 140�
and jhj6 60�, with the maximum effect seen at h ¼ 0�.
4.2. Isochromatics in FGMs

Isocromatics are generated by the stress optic law (Eq. (42)) combined with stress fields.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrx � ryÞ2 þ 4s2xy

q
¼ Nfr

h
ð42Þ
where N is the fringe order, h the plate thickness and fr the material fringe constant.
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In generating these contours, the stress intensity factor KI and KII were set to 1.0 MPa
ffiffiffiffi
m

p
and 0.5 MPaffiffiffiffi

m
p

, respectively, and a material fringe constant f of 6500 N/m-fringe and thickness of h ¼ 9:5 mm were

assumed. The remote stress in the x direction rox was set to zero.

Fig. 9 shows the opening mode isochromatics for a homogeneous material (1 ¼ 0) and for two values of
1 around a stationary crack tip. One can observe from the contours shown in Fig. 9 that the fringes for a

homogeneous material are upright. However, the contours for nonhomogeneous materials, due to non-

homogeneity away from the crack tip, tilt away or towards the crack face depending on the sign of 1. When

1 > 0 (the modulus increases ahead of the crack), the fringes tilt forward whereas for 1 < 0, the fringes tilts

backward. The tilt is more predominant away from the crack-tip. As r approaches 0, the fringes regain their

classical form (upright), indicating that the stress components in an FGM are the same as that in isotropic

materials only very close to the crack tip.

Fig. 10 shows the isochromatic fringe patterns for a propagating crack tip (M ¼ 0:7) for the same value
of K used to generate Fig. 9. Generally isochromatic fringes for fast propagating cracks tilt more towards

the crack face (backward) compared to those for a stationary crack. As shown in Fig. 10, the backward tilt

of the fringe patterns for a propagating crack is greater when 1 < 0 compared to that when 1 > 0. This is

because the forward tilt due to a positive 1 compensates for a portion of the backward tilt due to the crack

speed.

Fig. 11 shows the shear mode isochromatic fringe patterns for a stationary crack in an FGM generated

using a KII ¼ 0:5 MPa
ffiffiffiffi
m

p
. When the FGM constant 1 is zero, the fringes are symmetrical about the y axis.

However, when the FGM constant 1 > 0, the fringes enlarge forward, whereas when FGM constant 1 < 0,
Fig. 9. Isochromatic fringe patterns obtained for a static crack tip in an exponential variation of elastic and physical properties under

KI ¼ 1:0 MPa
ffiffiffiffi
m

p
, f ¼ 6:5 kN/m, h ¼ 9:5 mm and rx2 ðroxÞ ¼ 0. (a) 1 ¼ 0, M ¼ 0:02; (b) 1 ¼ 1:19, M ¼ 0:02; (c) 1 ¼ �1:19, M ¼ 0:02.

Fig. 10. Isochromatic fringe patterns obtained for a propagating crack tip in an exponential variation of elastic and physical properties

under KI ¼ 1:0 MPa
ffiffiffiffi
m

p
, f ¼ 6:5 kN/m. (a) 1 ¼ 0, M ¼ 0:7; (b) 1 ¼ 1:19, M ¼ 0:7; (c) 1 ¼ �1:19, M ¼ 0:7.
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the fringe enlarges backward. The results are representative of the fact that the shear modulus increases in

the þx direction when 1 > 0 and decreases in the �x direction when 1 < 0.

Fig. 12 shows the isochromatic fringe patterns for the propagating crack tip with M ¼ 0:7 for the same

KII. Similar to Fig. 11, the fringes enlarge more backward when 1 < 0 compared to that for 1 > 0.
Fig. 13(a) and (b) shows the opening mode isochromatic fringe patterns for a linear variation of elastic

properties with a constant density for the same value of K used to generate Fig. 9. Considering crack length
Fig. 11. Isochromatic fringe patterns obtained for a static crack tip in an exponential variation of elastic and physical properties under

KII ¼ 0:5 MPa
ffiffiffiffi
m

p
, f ¼ 6:5 kN/m. (a) 1 ¼ 0, M ¼ 0:02; (b) 1 ¼ 1:19, M ¼ 0:02; (c) 1 ¼ �1:19, M ¼ 0:02.

Fig. 12. Isochromatic fringe patterns obtained for a propagating crack tip in an exponential variation of elastic and physical properties

under KII ¼ 0:5 MPa
ffiffiffiffi
m

p
, f ¼ 6:5 kN/m. (a) 1 ¼ 0, M ¼ 0:7; (b) 1 ¼ 1:19, M ¼ 0:7; (c) 1 ¼ �1:19, M ¼ 0:7.

Fig. 13. Isochromatic fringe patterns obtained for crack tip in a linear variation of elastic and properties with constant density.

(a) 1 ¼ 1:22, M ¼ 0:02; (b) 1 ¼ 1:22, M ¼ 0:7.



Fig. 14. Isochromatic fringe patterns obtained for crack tip in a linear variation of elastic and properties with constant density.

(a) 1 ¼ 1:22, M ¼ 0:02; (b) 1 ¼ 1:22, M ¼ 0:7.
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a ¼ 0:05 m, the FGM constant 1 for the linear variation of elastic properties when lðX Þ ¼ 1:316ð1þ 1X Þ is
1:22=m, unlike 1:19=m for the exponential variation. Comparing Figs. 9 and 13 for stationary crack, the two

isochromatic fringe patterns are almost the same. For a propagating crackwithM ¼ 0:7, the isochromatic fringes

for the linear variation of elastic properties with constant density are also nearly the same as those for the

exponential variation of properties and density in�5 < x < 2 cm, but they are somewhat different for x > 2 cm.

Fig. 14(a) and (b) show shear mode isochromatic fringe patterns for linear variations in elastic properties

under a constant density for the same values of K used to generate Fig. 11. Comparing Figs. 11 and 14, the
isochromatic fringes for the linear variation of elastic properties with constant density are somewhat greater

than those for the exponential variation of properties and density.
5. Summary of results

In the study, stress and displacement fields close to a propagating crack tip in an FGM which has (1) a

linear variation of shear modulus with constant density and Poisson�s ratio, and (2) an exponential vari-

ation of shear modulus and density under constant Poisson�s ratio, are developed. Experimental methods
used in fracture investigations employ such descriptions of the stress field to extract the stress intensity

factor from full-filed experimental data sampled from a region between the near field and far field. In this

intermediate region, a singular term and one or two higher order terms are sufficient to accurately describe

the stress field.

The analysis presented here indicates that at least three terms must be considered in the case of FGM in

order to explicitly account for the nonhomogeneity effects. The explicit form of the nonhomogeneity specific

higher order terms is developed for FGMs using which the characteristics of the stress fields and the effect of

nonhomogeniety on their structure is brought out. The results indicate that nonhomogeniety effects depend
on the angular position of the point considered. The effects are dominant in the region around the crack-tip

from where experimental data is usually sampled, and hence, the nonhomogeneity specific terms presented

here must be included to obtain meaningful estimates of fracture parameters from experimental data.

Appendix A

Let complex variable z put as follows
z ¼ xþ my ðA:1Þ

where m is a variable dependent on crack propagation velocity and physical properties.
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Substituting Eq. (A.1) into Eq. (4) transformed with moving coordinates when 1 ¼ 0, we obtain

Eq. (A.2).
AðmÞU000
1 þ mBðmÞW000

1 ¼ 0

mAðmÞU000
1 � BðmÞW000

1 ¼ 0
ðA:2Þ
where
AðmÞ ¼ l0ðk þ 2Þ ðm2

�
þ 1Þ � qc2

l0ðk þ 2Þ

�
; BðmÞ ¼ l0 ðm2

�
þ 1Þ � qc2

l0

�

The characteristic equation of Eq. (A.2) is as follows
ðm2 þ 1Þ m2

�
þ 1

�
� qc2

l0ðk þ 2Þ

��
m2

�
þ 1

�
� qc2

l0

��
¼ 0 ðA:3Þ
The characteristic roots of positive number for the equation are as follows
m ¼ i; m ¼ ial; m ¼ ias ðA:4Þ

where, the root m ¼ i is independent of crack velocity and physical properties, it is only depend on relation

between U000
1 ðalÞ and W000

1 ðasÞ. Thus, the coefficients of U000
1 ðalÞ and W000

1 ðasÞ in Eq. (A.2) are as follows.
m ¼ i; AðmÞ ¼ AðialÞ; BðmÞ ¼ BðiasÞ ðA:5Þ

Considering U000

1 ðalÞ ¼ o
og1

U00
1ðalÞ, mW000

1 ðasÞ ¼ o
og2

W00
1ðasÞ and substituting Eq. (A.5) into Eq. (A.2) integrated

with z, we can obtain the relation between U1ðalÞ and W1ðasÞ.

o

og2
W1ðzsÞ ¼ � Aðm ! ialÞ

Bðm ! iasÞ
o

og1
U1ðzlÞ ¼ �ðk þ 2Þ o

og1
U1ðzlÞ ðA:6Þ

1

k þ 2

o

og1
W1ðzsÞ ¼

o

og2
U1ðzlÞ ðA:7Þ
where integral constants related to rigid displacement are ignored.
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Fig. 15. AðalÞ=½ðk þ 2ÞBðasÞ� with crack propagation velocity.
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We can confirm the AðalÞ=BðasÞ ¼ k þ 2 in Fig. 15 which obtained under subsonic crack velocity when

m ¼ 0:33.
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