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Abstract

Stress and displacement fields for a crack propagating along gradient in a functionally gradient material, which has
(1) a linear variation of shear modulus with a constant density and Poisson’s ratio, and (2) an exponential variation of
shear modulus and density under a constant Poisson’s ratio, are developed.

The equations of motion in nonhomogeneous materials are first developed using displacement potentials and the
solution to the displacement fields and the stress fields for a crack propagating at constant speed though an asymptotic
analysis. The influence of nonhomogeneity on the higher order terms of the stress fields are explicitly brought out.
Using these stress components, isochromatic fringes around the propagating crack are generated for different crack
speeds and nonhomogeneity and the effects of nonhomogeneity on these fringes are discussed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Several novel materials have recently been developed to meet the increasing demand of modern tech-
nology (Niino et al., 1987; Butcher et al., 1999; Jedamzik et al., 2000; Zeng et al., 2000). Among these,
functionally graded materials (FGMs) are unique in that they offer the possibility of tailoring their con-
stituents and gradation to match the end use. These materials also have certain advantages over existing
isotropic materials and conventional composites, especially in applications that demand, resistance to
corrosion and high temperature as in furnace walls and turbine blades, wear resistance as in gears and high
speed machine tools, combined with good toughness and strength characteristics. Conventional materials,
which satisfy all these requirements, are rare. The general practice therefore has been to provide an interior
wall made of high heat resistance material in the case of furnaces and in the case of gears and tools with
super wear resistance material. Unfortunately, such interior walls or coatings are mechanically weak at the
interface due to discontinuous stresses resulting from thermal gradients and due to poor bond strength,
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leading to interface cracking and spallation. FGMs can be effectively designed to overcome these defi-
ciencies, by proper choice of the constituents and gradation. The spatial variation of the material com-
position in FGMs results in a medium with varying elastic and physical properties and calls for special
methods of processing and analysis.

Until now, the fracture of an FGM under quasi-static loading, which is one of the predominant modes of
material failure, has been investigated extensively (Erdogan, 1995; Jin and Batra, 1996; Gu et al., 1999). The
primary conclusion of these investigations is that the classical inverse square root singular nature of the
stress field is preserved in FGMs, however, the stress intensity factor is influenced by the nonhomogeneity
of the material. Therefore, very close to the crack tip in FGMs, the stresses are identical to that in a
homogeneous material. The structure of the stress field away from crack tip is significantly altered by
nonhomogeneity, as has been demonstrated by Eischen (1987) and Parameswaran and Shukla (2002).

The behavior of propagating cracks in FGMs has also attracted some attention. Following an earlier
study by Atkinson and List (1978), several groups have investigated the behavior of propagating cracks in
FGMs especially after their introduction. (Wang and Meguid, 1995; Rousseau and Tippur, 2001; Jiang and
Wang, 2002). For propagating cracks along the gradient in FGMs, Parameswaran and Shukla (1999, 2002)
developed the structure of the first stress invariant and the out of plane displacement bring out the effects
of nonhomogeniety. However, nonhomogeneity specific terms for individual stress components have not
been developed. Such stress fields are required in the analysis of full field experimental data obtained
through techniques such as photoelasticity and coherent gradient sensing (CGS). This paper provides the
stress and displacement fields for a crack propagating at a constant speed along the direction of property
variation in an FGM. The elastodynamic problem is formulated in terms of displacement potentials and
the solution is obtained through an asymptotic analysis assuming a linear variation of elastic modulus with
a constant density in Section 2. In Section 3, the solution for an identical exponential variation of elastic
properties and density is obtained by employing the same procedure as used in Section 2. In Section 4,
using the stress and displacement fields obtained in Sections 2 and 3, the characteristics of stress and
displacement components around a propagating crack tip are examined for different crack speeds and
nonhomogeneity.

2. Stress and displacement fields for a linear variation of elastic properties with a constant density
2.1. Formation for equilibrium equations

When the FGM has a linearly increasing shear modulus such as p = (1 + ¢X) under a constant density
p and Poisson’s ratio v, the relationship between stresses and strains can be written as

ox = [anex + apey](1 +cX)
Oy = [alzgx+0118y](1+gX) (1)
Txy = HoYxy (1 4+ ¢X)

where X is the reference coordinate, o;; the inplane stress components, ai; = Ao + 2y, and a;p = 4o, and /g
and p, denoting Lame’s constant and the shear modulus at X = 0, respectively. ¢ is the nonhomogeneity
constant which has dimension (length)~!. It should be noted in this case that the longitudinal and shear
wave speeds of the medium are variable.
If the deformation is plane strain, the displacements u and v which are derived from dilatational and
shear wave potentials @ and ¥ can be expressed by Eq. (2)
o oY 0P oY

=% "Tor ax (2)
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The equilibrium in dynamic state is given by Eq. (3)
dox Oy  Ouw  Ouy Doy O (3)
ox "oy Per ax Ty TP
Substituting Eq. (2) into Eq. (1), and substituting Eq. (1) into Eq. (3), the equations for the dynamic state
can be obtained as

Gl A 5 p P d J—, p Y G 2
6X{<1+5X)(k+2)v(p 1o OF }+6Y{(1+5X)V b4 T 2¢ 372 axar (=
(4a)
2 (1+fX)(k+2)v2<p—ﬁaz—‘p _0 (1+”X)V2‘P—£62—lp +2¢ 62—W+ co =0
oY z 1, 0F X > Lo OF sloy? Taxoy |
(4b)
where k = o/, Eq. (4) can be satisfied when expressed as Eq. (5)
o’P 4
1+ eX)(k+ 22— 252 10 =
(1+cX)(k+2)V o or + 3y 0 (5a)
e 4 0P

For a propagating crack, the transformed crack tip coordinates are x = X — c¢t, y = Y. From this relation,
we can write the equations of motion for steady state can be written as

20 0o Qe P\ 28 oV
2
2B oY _ 6
“ 6x2+6y2+'3x<@x2+6y2) k+2 3y (6a)
Qv v rv v 0d
2 O°F O o¥ oYy 00
% o 0y? ﬁx( Ox? + 0y? ) b Oy 0 (6b)

where

2 c 2
s G T o
Cs
2

2(1 — . /
o =c u for plane strain, ¢ =c¢; for plane stress,
1 —2v 1—v

Ho 9
= 1 c) ,6) =C—=
He :u()( +a ) ﬁ(a 5) g,Llc 1—|—ag

Do

The a is half the crack length in a center crack or the crack length of an edge crack. u, and y, are shear
modulus at the crack tip and x = —a, respectively. ¢, ¢; and ¢, are the crack propagation velocity, elastic
dilatational wave velocity and elastic shear wave velocity at the crack tip. In this case, f(a, ¢) is dependent
on the crack length and the nonhomogeneity constant ¢. It is very difficult to obtain analytical solutions for
the elastodynamic differential equation (6). Thus, an asymptotic analysis similar to that employed by
Freund (1990) is used to expand the stress field around the propagating crack. To obtain an asymptotic
expansion of the fields around the crack tip, the crack tip coordinates are scaled to fill the entire field of
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observation (Freund, 1990). This can be achieved by introducing new coordinates n, = x/¢, 5, = y/¢ and ¢
is a small arbitrary positive number. For very small values of ¢, the points very close to the crack tip
are mapped into the range of observation in the 7, 7, plane. In the scale coordinates, Eq. (6) takes the form

azazq5+azqs+8ﬁ eo @0\ 2 av]_, (7a)
Yont - on "\og o) Tkr2on) T

2y 2w L AL 00
f——+——+s{ (——+——)—z—l:0 7
Yot o3 P ot onj on, (70)

At this stage it is assumed that @ and ¥ can be expanded by powers of ¢ as

(D(X,y) = ¢(8171 ’ 8’72) = Z 8n/2+1 ¢n (771 ’ ’72)
n=1
N (8)
W(x,y) = W(en,eny) = > _ & W, (n,m,)
n=1
asr = /x* +3? — 0 and ¢ is a small arbitrary value. Substituting Eq. (8) into Eq. (7) and setting the partial
differential equations associated with each power of ¢ to zero, the coupled differential equations for @, and
¥, can be obtained.

o*d, P, b, ., D, 28 0Y,_
0612 2 2 :_ﬁm( 22 22) - 4 : (%)
ony on3 ony on3 k+2 on,
Yy, *PVv (62‘1’ 5 62¥’_2) 0P,
az n n — n n 2 n 9b
A o3 o, )

The &, and ¥, have the complex functions z(y;,ion,) and z(y,,ion, ), respectively, and @, = ¥, = 0 if
n < 0. When the ¢ = 0, the right side terms of equation become zero.

2.2. The stress and displacement fields for n = 1,2

From Eq. (9), the differential equations for » = 1 and 2 are given in Eq. (10)
’e, 0o, oy, v,
Hort =0 LT+ =0 (10)
ony o o o,
Eq. (10) is the Laplace equation and the same as that for a homogeneous material. The general solutions of
Eq. (10) for fields @, and ¥, can be assumed as

®,(n.1) = —Re / do(z)dz,
%Wwﬁ=4m/%%Ma

Substituting the differentiation of @, and ¥, in Eq. (11) into Eq. (2), the displacements in scaled plane can

be obtained as &/2{¢,(n,,1,), ¥, (n1>)}. Thus, the displacements u and v in the unscaled physical plane for

n =1 and 2 can be expressed as Eq. (12).
u=—Re{d,(z) + a¥,(z)}
v=Im{ug,(z) +v,(z)}

0,

(1)

(12)
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Substituting the differentiation of Eq. (12) into Eq. (1), the stress fields in the scaled plane can be obtained
as &> 'l ¢, (n, 1), ¥,(mn,)}. Thus the stress o;; in the unscaled physical plane for n = 1 and 2 can be
expressed as Eq. (13).

o, = —uRe{(1 + 207 — o)) b, (21) + 20/, (2)}
0, = uRe{(1 + 22) ) (1) + 20 (2.)} (13)
= wlm {20, (z1) + (1 + o), (z)}

The ¢,(z) and y,(z) can be written with a power series as

2 2
bo(2) =D 4,77, Y,z) =D BZ" (14)

where 4, and B, are complex constants and z; = x + ioqy and z; = x + iasy. Substituting Eq. (14) into Eq.
(13), applying traction free boundary conditions on the crack surface to Eq. (13), the stresses for propa-
gating crack in unscaled physical plane can be obtained as Eq. (15).

om = (1 + px) iagn, o, = (14 px) iaﬁn, Ty = (1 4 fx) irgw (15)
=1 ] =1
where
o = K’?j%c)n{(l + 208 — cxi)rl%z cos (n 3 )91 20h(n )r:52 cos (%)05}
+K*5;_(C) {(1 + 208 — az)rl%zsin (n 3 2)01 2oih (7 )rziz sin (%)05}

0 =2 =2 -2
K BI { +ot e cos< >01+2fxs (n)rs? cos (_n )95}
2 2
Br(c) 12 n— 2 =2
\/_ { (1+d)n sm( 3 )01—1—20(5 (7)rs* sin (—2 )05}

KB (c -2 12 o n—2
T)(c)}w = o Vl{ 20(17"1 sin ( 7 )01 + n)rsz Sin (T)GS}
EAN

K*By(c) n2 n—2
+ﬁ Zoqu cos 0, — h(n)rs* cos 7 0,

The displacement for propagating crack in an unscaled physical plane can be obtained as Eq. (16).

1l & 1 Gy
u, = (1 +Ca) Zu;ﬁ U, = (1 _’_ga) Zvn (16)

where

u’ :%;(c)\/%{r?cos (g)@l — ocsh(n)récos (g)@s} —&—1%;(6)\/%&17 sin (g)@l - ocsh(ﬁ)rgsin (g)@s}

~—

ﬂ
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vg = %\/%{ - oqu% sin (g)@l +h(n)r:?sin (g)ﬁs} +%ﬁ(6)\/%{oqr?cos (g)él — h(r‘z)r:?cos (g)@s}
rp=1y/x+ (), 0;=tan'(aw/x), j=1s

2 1+ o?
hn) = - flaz (n = odd), %(n —even), Ai=n+l
1+o2 Dot
BI(C) = BH(C)

doyas — (1 + ocf)p B doyas — (1 + af)z

K} and K for n =1 are the stress intensity factors K; and Kjj, respectively. When n = 1 and 2, the dif-
ferential equations in Eq. (10) are the same as those for a homogeneous material (Freund, 1990) but their
stress and displacement fields are influenced by the nonhomogeneity constant c¢.

2.3. Stress and displacement fields for n = 3

For n > 3 in Eq. (9), the @, and ¥, become nonhomogeneous fields, and only n = 3 is considered to
generate the fields in this study. To solve Eq. (9), the relation between ®;(z;) and ¥, (z;) must be known. If
the relation between @, (z) and ¥,(z;) does not apply to Eq. (9), the dilatational and rotational terms in the
equations of motion remain coupled. This causes the stress fields to be infinite when the crack velocity
approaches zero. Considering Eq. (10), the relation between @,(z) and ¥,(z,) can be obtained when the ¢
terms in Eq. (4) are zero. Thus, the relations can be expressed as (see Appendix A).

0 _ A(w) 0 B 0
a—]/lzlpl(zs) = _B(O(S) a—nl(pl(Zl) = —(k+ 2)6—171@1(21) (173)
;—Tl(zs) —i¢1(zl) (17b)
k+2 on, on,

where

Alo) = (kD)1= ) =R ) = (1 o) =25

Substituting Eq. (17) into Eq. (9), Eq. (9) becomes as

PP, P XP, ¢ 0P
2 3 3 1 1 1
S it 21 18:
“ on; - on3 g l( ony - on3 ) on, (18a)
*Y, ¥ Py, Y 28 ¥
> 3 3 1 1 1
_ on 18b
% oy o ﬁ"‘( oy o3 > k+2 on, (186)

Let the right side terms ®;(z) and ¥,(z,) in Eq. (18) put —Re [ ®(z)dz, —Im [ ¥,(z,)dz,, respectively,
then the solutions for @;(z;) and ¥;(z;) can be obtained as
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stmom) = Re{ ~ [ a)aa g laznma,d) @) - 30| | (19a)
i) = i = [tean+ g Pz )~ e | (19)

where a; is a coefficient of trigonometric function, and

L. 3 3
a_{z [ajCOS (9,,@,51n549_i]
iT V1. -

L. ]ajcos10;,a;sin10]

The first term on the right hand side in Eq. (19) corresponds to that for a homogeneous material and the
additional term is the result of the nonhomogeneity of the material. The nonhomogeneous K displacement
field obtained from Eq. (19), uyon(f, K) can be applied in » — 0. However the displacement components
obtained from the last terms in Eq. (19) approach very large values except when » = 0 when the crack
propagation velocity approaches zero. Such a behavior is not consistent with the physical meaning of » > 0.
Thus, the last terms can not be applied in the case where » > 0. Substituting Eq. (19) into Eq. (2) and
applying the traction free boundary condition to the crack surface, the components of displacement in the
unscaled plane can be expressed as

1 o pKiBi(c) [ 32 (1 —of) 32, (1—0f) ]
U3 = ————< Uy — r F(0) + r*h ~—=2G 0,
3 (1+Ca){ 3 ﬁﬂom 1 0(12 ( l) s 1 o ( )
KyB(c) { 3 (1= of) oy (1—o) ]
¥ H(0)) + 22 hy ~——=21(6, 20
MO\/E 1 OCIZ (1) s 1 o ( ) ( )
L[, L KBie) { o (1= o) o, (1-22) }
— - 1(0 2h S H (6
" (1+Ca){v3 ﬁﬂov27r Ty (61) 7 o2 ()
KuBn(c) { 3 (1 —of) oy (1—a7) ]
+ ¥ G(0) + r¥h ~—=LF (0, 21
ﬁ /,to\/% 1 o (1) s 1 o{g ( ) ( )
where
1 1 30, 3 0 1 5 1 30, 1 0;
F(O,) = — 089 42 cosd V= e cos2 4 D cosd
0)) 1€ %55 9+ 5 Cos— +gcos—, G(0)) 16coszé) +p cos— -+ g cos
1 1 . 39_,- 3.0,
H(0;) =— 16s1n20 +12 5 ~gsing
1 1 30, 1 0;
1(0;) = — —sin=L——sin, j=1I
Ch) 16sm 9+12 5 8s1n2, j=1s

Substituting the differentiations of Egs. (20) and (21) into Eq. (1), the stresses for a propagating crack in the
unscaled plane can be obtained as
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KiBi(c) 1 (1-2) 4
o =(1+ ﬁx){a& +p Jor 02 |(1 420 — o)A, C1 () — == 5 C2(6)
K1Bi(c) 1/2 1 1 1 30, 1 7
+f— o 20,B1hy 4cos20S T cos > —1—32 cos29S
KuBu(c) 1p[ ) — o) Ai
+ ﬁ \/% n (1 + 20(1 ocS)AlSl(Hl) + (1 — 0612) 3 SQ(Hl)
KHBH(C) 1/2 - _1 . 1 . 1 . ﬁ i
+ ﬁ—m ry'* | 20B1hy 3 sm2(9S 16 + 7 s1n 9 (22)
KIBI< ) 12 (1+OC§—2062> Al
Oy3 = (l+ﬁx){ L+ f— Nor: / |:_(1+O€§)A1C1(91)+(1_70612)17C2(91)
KiBi(c) P72 1 1 ﬂ 1
+[)’\/E 20,81 hy cos 0s — T 24—32cos 9
K[]B][( ) 1/2 (1 +OC 20{1) A]
KUB”( ) 1/2 1 1 . 30 1 i 7
e —_— - 0, 2
+p Nor: 20,8l sm 0+16 5 35 Sin50s (23)
B KiBi(c) 1/2 1 1 i . 3_017L 7
’L'Xy3(l+ﬁx){ xy3+[3 Ner — 2044, 4sm 61+16 n sm201
KiB(c 1
+ ﬁl\/;_;)r;ﬂhl& [— (1+a2)S(6,) + 252(05)}
KuBr(c) A2 1 1 1 &_L 7
+p Jon — 2004, — 5 o83 01+16co 32c0520,
KnuB - 1
+ﬁ%17§0)r51/2h181 [— (1+02)Ci(6:) +§c2(05)” (24)
where
1 — o 1—o?
Al - OC12 ) Bl - ag
1 3
Ci(0)) = 13_6 cos 5 0; + 312 cos%@,, G (0)) = cosiﬁj + Cosiﬁj
3 .
Si1(0)) = % sm39 +t33 sm%@,-, $,(0;) = siniﬁj — SmEGJ
P 1440 7 A+ a2)[7(1 — of) — 32] + 6407}
B2 +02)B [140(1 — o2)]B;
Finally, the fields for FGM, ¢;; and u; are given in Eq. (25)
(25)

3 3
61/ - § Gijn; u; = E Ujn
n=1 n=1
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The stress fields in Eq. (25) satisfy the traction free condition on the crack surface (6§ = +n). When the
nonhomogeneity parameter ¢ = 0, the equations reduce to the fields for an isotropic homogeneous material.
It can be observed from the stress and displacement fields (Egs. (20)—(24)) that, due to nonhomogeneity, the
higher order terms (» = 3 and above) involve additional expressions containing the stress intensity factor.
However, these additional expressions scaled by the nonhomogeneity parameter, f§ (for example see Eqs.
(20)-(24)) become insignificant compared to the singular term of the expansion at the crack tip. Thus, very
close to the crack tip, the stress and displacement fields can be adequately represented by the solution for
homogeneous materials. However, the stress and displacement field that is remote from the crack tip must
be expressed by Eq. (25) which contains nonhomogeneity specific expressions. Generally, in order to obtain
the fracture parameters for a homogeneous material from experimental data obtained through optical
techniques such as photoelasticity or coherent gradient sensing (CGS) the use of the first few terms of the
stress fields is sufficient. The coefficient of term n = 1(r~"/ 2f,;) is proportional to the stress intensity factor
and that of the term n = 2(°f;;) is the uniform stress o,, in the direction of the crack. In FGMs, it is
necessary to use at least three terms of the fields to explicitly account for the nonhomogeneity effects when
extracting fracture parameters from experimental data.

3. Stress and displacement fields for an exponential variation of elastic properties and density

The elastic constants x4 and p of FGM are assumed to vary in an exponential manner as given by Eq.
(26), where as the Poisson’s ratio v is assumed to be constant.

1=t exp(iX), p = pyexp(CX) (26)

Uy and p, are shear modulus at X = 0, respectively, and ¢ is the nonhomogeneity constant. By employing
the same procedure used in Section 2.1, the equilibrium equation for exponential variation of elastic
properties can be obtained as

2 py BB\ 0 py OV 20w

S kv 2L, 0 Sy P OY 291292 4 - 2
ax{<k+ VO~ }‘Lay{v o 0P }H{kv Tt axay} 0 (272)
2 py B\ 0 py OV 20 v v

Clgroyve 2L 0 gy MY I A 27b
S . (A B i (378)

where k = A9/u,. For a propagating crack the transformed crack tip coordinates are x =X —ct, y=17.
Thus, Eq. (27) can be expressed as

,0 e b [ P

oo o _ 2
o T e T k2 oy (282)
Fv v 0¥ ob
2

o 0P _ 2
gt T iay g, =0 (28b)

It should be noted here that, Eq. (28), unlike Eq. (6) for the linear variation of elastic properties, have
coefficients which are all constants. Hence, for crack speeds that are less than the shear wave speed of the
material, the partial differential equation is elliptic over the entire domain. However, the form of the
equation is still different from the classical wave equation. The same procedure used in the previous section
is used to obtain the asymptotic expansion of the displacement and stress fields. For n equal to 1 and 2, the
partial differential equations and their solutions are the same as those in the case of linear variation and
hence, the crack tip stress and displacement fields can be expressed as
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2 2 2

_ Al 0 A 0 _ A 0
O = € E o), Op=E¢ E Oy Tom =€ E Tom (29)
n=1

n=1 n=1

The displacement for propagating crack in unscaled physical plane can be obtained as Eq. (30).

2

2
— o Ca 0 — o ta 0
u, =¢e E u, v, =¢e E v, (30)
n=1

n=1

The form of the partial differential equation for n greater than 2 is somewhat different from Eq. (9) and is
given as

’o, 0’ 0D, 1 oY,
2 n n n—2 n—2
= 3la
o T on C{ ony  k+2 n, ] 1)
’y, oY oY, 09,
OC? n + n_ |: n—2 + k n 2:| 31b
Toni o3 an, n, (1P)
Applying the relation between ®,(z;) and ¥, (z,) in Eq. (17) to Eq. (31), Eq. (31) becomes as
3o, 0’
2 3 3
- 3 2
o tog (32)
Py, 'Y, oY,
o —— C[ldS —} 33
on T ong e (33)
where
d —k 140 =207

Tk+2 1-o2

Let the right side term ¥, (z) in Eq. (33) put —Im [y, (z;) dz,, then the @3(z;) and ¥(z,) can be obtained
as

@5 (1, 11,) Re{ /¢3(zl)dzl} | (34)

vatmon) =tmd = [inGds+ L1 E )

Substituting Eq. (34) into Eq. (2), the components of displacement in the unscaled plane can be expressed as

Uy = exp(—{a){ug - CL(C) [rs/zih(l —dy) (l cos& - % cos&)}

oV 21 Ot 3 2 2
KHBH(C) 32 1- 1 . 305 1 . 95
{ PRVGr T ocsh(l dy) 3 $in — +2 sin (35)

Bi(c) 1 1 .30, 1 .0
— _ 0 _ o2PIE) 1 3/2 2 _ _ s s
v3 = exp( Ca){”z { V21 [”s agh(l ds)(3 $in—-— 5 sin> )}

KuBn(c) 3/2l‘ _ l % l %
+ /= |:rs chh(l dy) 3cos 2 +20052 (36)



K H. Lee | International Journal of Solids and Structures 41 (2004) 2879-2898 2889

Substituting the differentiations of Egs. (35) and (36) into Eq. (1), the stresses for a propagating crack in
unscaled plane can be obtained as

Bh 30, KyB B 30,
033 :exp({x){aﬂ—i—c _Zi)rsl/zocs{Tc 5 } 4 ¢ _;750) rsl/zocs{—z hsmT]} (37)
B B 30, KuB B - 30,
ay3exp(Cx){ oy + ¢ I\/%)r:/%xs{—zhcosz] +Cli/;_17§c)rj/2 [2h3m2}} (38)
KB 0, 1 2 30,
tmexp(g“x){ x}3+é i/%) l/ZBh[ (1—oc)s1n5+ :a s1n2]
KuBu(c) 1pp7lq O, 14a 30
—Hjim r/*Bh| (1 oc)cosz+ 1 o8 (39)
where
1 —d,
B=—j

Even if the stresses for n =3 are expressed as the above equations, considering the traction free con-
ditions on a crack surface (6 = £n), # and 7 must be zero. Thus, the fields ¢;; and u; for an exponential
variation in elastic properties and density are can be expressed as Eq. (40).

0, = exp({x) Z o) u; = exp(—La) Z uj, (40)
n=1 n=1

The stress fields around the crack tip (x is small) in Eq. (40) can be expressed as

G - O—1/1 + JI/Z(GOX) + Cx[o-z/l + O_O’C] +- (41)

As is known from Eq. (41), higher order terms of stresses at the crack tip in the form of an asymptotic
expansion show the coefficients of 7!/ and 7 to also be identical to those present in the asymptotic the
behavior of a formulation of homogeneous crack tip. Only terms of the order »'/? and beyond would be
influenced by such a gradient, which would have coefficients different from those of homogeneous mate-
rials. However, higher terms of displacements at the crack tip as an asymptotic expansion would be
influenced not by ¢x but by ca.

4. Characteristics of a propagating crack in an FGM
4.1. Effect of nonhomogeneity on stress fields

In order to investigate the effects of nonhomogeneity on stress components close to the crack tip, Eq.
(41) for the exponential variation of elastic properties is used. To analyze the isochromatic fringe patterns
that are remote from the crack tip, Egs. (25) and (41) are used. In addition, all the coefficients other than
those proportional to the stress intensity factor are assumed to be zero. The stress components (see Fig. 1)
were evaluated as a function of the angular position () at three different radial locations () for a near
stationary crack and for a crack propagating at M = 0.7, where M is ¢/cs. The mechanical properties of the
particulate FGM developed by Parameswaran and Shukla (2000), as shown in Table 1, were used. The
variation of the elastic modulus for this FGM is shown in Fig. 2, along with the exponential fit. Figs. 3-5
show the angular variation of the normalized stress components for a mode I crack and Figs. 6-8 show the
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Fig. 1. Stress components in the vicinity of the crack tip.

Table 1
Mechanical properties for a polyester FGM
Nonhomogeneous shear modulus, u(X) u(X) = 1.316e¥ (GPa)
FGM constant, ¢ ¢=1.19/m
Poisson’s ratio, v v=0.33
Density at X = 0, p, 0o = 1200 (kg/m?)
28}
—e—:¢=1.19/m
24F |—=—:(=-1.19/m
= —: =0
& 20}
=
© 16
=
8 1.2F
1S
g o8t
2 (€X)
W=, exp
04+t °

00 1 1 1 1 1 1
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
X Location from left side of specimen(m)

Fig. 2. Variation of shear modulus p with X location.

variation for a mode II crack. The normalization is carried out by dividing the stress components by
(K /v/27r). In a homogeneous material this would imply that only the singular term of the stress field needs
to be considered and due to the normalization scheme the curves for different values of » will fall on top of
each other in Figs. 3-8. However, in the case of FGMs, the additional expression of the higher order term
(r'/?) proportional to the stress intensity factor arising out of nonhomogeneity are still retained through
which the nonhomogeneity effects are manifested.

Fig. 3 shows the normalized stress g,/0; around a near stationary crack tip and a propagating crack tip
for a value of ¢ = 1.19/m under mode I loading. Similar to homogeneous material, for the same value of K,
the normalized o, increases with crack propagation velocity and reaches a maximum at § = 0° and a
minimum at 6 = +180°. The stresses very near the crack tip (» = 0.001 m) are the same as those for iso-
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Fig. 3. Normalized stress o,/o] with 0.
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Fig. 4. Normalized stress ¢, /0] with 6.

tropic materials as this curve coincides with the curve shown for an isotropic material. However, as the
values of r increase the curves separate from each other depending on the value of 0, thus, indicating the
nonhomogeneity effect. As can be seen from Fig. 3, the effect of nonhomogeneity on stress o, is the greatest
at 0 = 0° at which the stress in the FGM is greater than that of a homogeneous material. This increase is
larger for higher values of ». The results are representative of the increase in mechanical properties along
0 = 0° with increasing ». When the crack is static, o, is independent of ¢ at 6 = 90°, when the crack
propagates at M = 0.7, o, is independent of ¢ at 0 = 110°. The result for a static crack is due to the effect of
mechanical properties which are constant along 6 = 90°, but the result for a propagating crack is due to the
effect of mechanical properties as well as crack velocity. o, approaches zero on the crack faces and therefore
the stress o, in this zone is small, nearly the same as that in isotropic materials.
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Fig. 6. Normalized stress o, /a}; with 0.

Fig. 4 shows the normalized stress o,/0] around stationary and propagating crack tip under mode I
loading. In this case, ¢,/0; is maximum at 0 = 60° when M = 0.02, where as for M = 0.7 the maximum
occurs at 8 = 70°. The effect of nonhomogeniety ¢ on stress ¢, is more significant for |0| <80° with the
greatest at 0 = 0°. Similar to o, the stress o, in FGM is greater than that of an isotropic material as r
increases. g, is almost independent of ¢ in the region 90° < |0] < 180° regardless of crack velocity.

The angular variation of the normalized stress 1,,/0, around the crack tip for mode I loading, shown in
Fig. 5, indicates that nonhomogeneity has very little effect on shear stress t,,. The shear stress reaches a
maximum at 6 = 110° and is zero along 8 = 0°, and 0 = £180° regardless of crack velocity.

The angular variation of the normalized stress components a;;/0; for different values of » are shown in
Figs. 6-8 for a shear mode crack. In the case of a mode II crack, the nonhomogeniety effects on g, reach a
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Fig. 8. Normalized stress 1, /a7 with 0.

maximum at 0 = 180° and increase with increasing » as shown in Fig. 6. In the case of o), the effect of ¢ is
very little as Fig. 5. In the case of shear stress t,,, the nonhomogeneity effects are dominant around ¢ = 140°
and |6] < 60°, with the maximum effect seen at 8 = 0°.

4.2. Isochromatics in FGMs

Isocromatics are generated by the stress optic law (Eq. (42)) combined with stress fields.

\/ (0, — ay)2 +47, = Nhfa (42)

where N is the fringe order, 4 the plate thickness and f, the material fringe constant.
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In generating these contours, the stress intensity factor K; and Kj; were set to 1.0 MPa v/m and 0.5 MPa
v/m, respectively, and a material fringe constant f of 6500 N/m-fringe and thickness of # = 9.5 mm were
assumed. The remote stress in the x direction o,, was set to zero.

Fig. 9 shows the opening mode isochromatics for a homogeneous material (¢ = 0) and for two values of
¢ around a stationary crack tip. One can observe from the contours shown in Fig. 9 that the fringes for a
homogeneous material are upright. However, the contours for nonhomogeneous materials, due to non-
homogeneity away from the crack tip, tilt away or towards the crack face depending on the sign of ¢. When
¢ > 0 (the modulus increases ahead of the crack), the fringes tilt forward whereas for ¢ < 0, the fringes tilts
backward. The tilt is more predominant away from the crack-tip. As r approaches 0, the fringes regain their
classical form (upright), indicating that the stress components in an FGM are the same as that in isotropic
materials only very close to the crack tip.

Fig. 10 shows the isochromatic fringe patterns for a propagating crack tip (M = 0.7) for the same value
of K used to generate Fig. 9. Generally isochromatic fringes for fast propagating cracks tilt more towards
the crack face (backward) compared to those for a stationary crack. As shown in Fig. 10, the backward tilt
of the fringe patterns for a propagating crack is greater when ¢ < 0 compared to that when ¢ > 0. This is
because the forward tilt due to a positive ¢ compensates for a portion of the backward tilt due to the crack
speed.

Fig. 11 shows the shear mode isochromatic fringe patterns for a stationary crack in an FGM generated
using a Ky = 0.5 MPa /m. When the FGM constant ¢ is zero, the fringes are symmetrical about the y axis.
However, when the FGM constant ¢ > 0, the fringes enlarge forward, whereas when FGM constant ¢ < 0,
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Fig. 9. Isochromatic fringe patterns obtained for a static crack tip in an exponential variation of elastic and physical properties under
Ky =1.0 MPa y/m, f = 6.5kN/m, 7 = 9.5 mm and 6,» (6,,) = 0. (a) ¢ =0, M =0.02; (b) ¢ = 1.19, M = 0.02; (¢) ¢ = —1.19, M = 0.02.
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Fig. 10. Isochromatic fringe patterns obtained for a propagating crack tip in an exponential variation of elastic and physical properties
under K; = 1.0 MPa /m, f = 6.5 kN/m. (a) c=0, M =0.7; (b) ¢ = 1.19, M = 0.7; (¢) ¢ = —1.19, M = 0.7.
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the fringe enlarges backward. The results are representative of the fact that the shear modulus increases in
the +x direction when ¢ > 0 and decreases in the —x direction when ¢ < 0.

Fig. 12 shows the isochromatic fringe patterns for the propagating crack tip with M = 0.7 for the same
Kyi. Similar to Fig. 11, the fringes enlarge more backward when ¢ < 0 compared to that for ¢ > 0.

Fig. 13(a) and (b) shows the opening mode isochromatic fringe patterns for a linear variation of elastic
properties with a constant density for the same value of K used to generate Fig. 9. Considering crack length
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Fig. 11. Isochromatic fringe patterns obtained for a static crack tip in an exponential variation of elastic and physical properties under
Ky = 0.5 MPa /m, f = 6.5 kN/m. (a) ¢ =0, M =0.02; (b) ¢ = 1.19, M = 0.02; (c) ¢ = —1.19, M = 0.02.
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Fig. 12. Isochromatic fringe patterns obtained for a propagating crack tip in an exponential variation of elastic and physical properties
under Kj; = 0.5 MPa v/m, f = 6.5kN/m. (a) c =0, M =0.7; (b) ¢ = 1.19, M = 0.7; (c) ¢ = —1.19, M = 0.7.
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Fig. 13. Isochromatic fringe patterns obtained for crack tip in a linear variation of elastic and properties with constant density.
() ¢ =122, M =0.02; (b) ¢ =122, M =0.7.
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Fig. 14. Isochromatic fringe patterns obtained for crack tip in a linear variation of elastic and properties with constant density.
(a) c=122, M =0.02; (b) c =122, M =0.7.

a = 0.05 m, the FGM constant ¢ for the linear variation of elastic properties when u(X) = 1.316(1 + ¢X) is
1.22/m, unlike 1.19/m for the exponential variation. Comparing Figs. 9 and 13 for stationary crack, the two
isochromatic fringe patterns are almost the same. For a propagating crack with M = 0.7, the isochromatic fringes
for the linear variation of elastic properties with constant density are also nearly the same as those for the
exponential variation of properties and density in —5 < x < 2 cm, but they are somewhat different for x > 2 cm.

Fig. 14(a) and (b) show shear mode isochromatic fringe patterns for linear variations in elastic properties
under a constant density for the same values of K used to generate Fig. 11. Comparing Figs. 11 and 14, the
isochromatic fringes for the linear variation of elastic properties with constant density are somewhat greater
than those for the exponential variation of properties and density.

5. Summary of results

In the study, stress and displacement fields close to a propagating crack tip in an FGM which has (1) a
linear variation of shear modulus with constant density and Poisson’s ratio, and (2) an exponential vari-
ation of shear modulus and density under constant Poisson’s ratio, are developed. Experimental methods
used in fracture investigations employ such descriptions of the stress field to extract the stress intensity
factor from full-filed experimental data sampled from a region between the near field and far field. In this
intermediate region, a singular term and one or two higher order terms are sufficient to accurately describe
the stress field.

The analysis presented here indicates that at least three terms must be considered in the case of FGM in
order to explicitly account for the nonhomogeneity effects. The explicit form of the nonhomogeneity specific
higher order terms is developed for FGMs using which the characteristics of the stress fields and the effect of
nonhomogeniety on their structure is brought out. The results indicate that nonhomogeniety effects depend
on the angular position of the point considered. The effects are dominant in the region around the crack-tip
from where experimental data is usually sampled, and hence, the nonhomogeneity specific terms presented
here must be included to obtain meaningful estimates of fracture parameters from experimental data.

Appendix A

Let complex variable z put as follows
z=x+my (A1)

where m is a variable dependent on crack propagation velocity and physical properties.
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Substituting Eq. (A.1) into Eq. (4) transformed with moving coordinates when ¢ =0, we obtain
Eq. (A.2).

A(m)®]" + mB(m)¥{ =0

(A.2)
mA(m)®|" — B(m)¥{' =0
where
A(m) = ok +2) {(nf +1) —L} B(m) = p {(m2 +1) _p_cz}
’ ok +2) | ‘ Mo
The characteristic equation of Eq. (A.2) is as follows
2 2
ol (gl () -
( ) to(k +2) Ho (A-3)
The characteristic roots of positive number for the equation are as follows
m=1i m=io, m=Iio (A4)

where, the root m = 1is independent of crack velocity and physical properties, it is only depend on relation
between @' () and ¥ (o). Thus, the coefficients of @' (x) and ¥} (%) in Eq. (A.2) are as follows.

m=1, A(m)=A(in), B(m)= Blia) (A.5)

Considering @' (u) = %(P’{(:xl), m¥7 (o) = % ¥ () and substituting Eq. (A.5) into Eq. (A.2) integrated
with z, we can obtain the relation between @, () and ¥ (o).

0 ~ A(m —iog) 0 B 0
67172?1(25) = 7B(m7—>i(xs) 67171@1(21) = 7(k+2)67m¢1(21) (A6)
L@ (21 (A7)

— P (z) = —
k+20n, 1(z) o,

where integral constants related to rigid displacement are ignored.
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Fig. 15. A(oy)/[(k + 2)B(«)] with crack propagation velocity.
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We can confirm the 4(o)/B(as) = k + 2 in Fig. 15 which obtained under subsonic crack velocity when
v =0.33.
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